
From Motion to Photons in 80 Microseconds:
Towards Minimal Latency for Virtual and Augmented Reality

Peter Lincoln, Student Member, IEEE, Alex Blate, Montek Singh, Turner Whitted, Member, IEEE ,
Andrei State, Anselmo Lastra, and Henry Fuchs, Life Fellow, IEEE

(a) Conventional display method. (b) Our display algorithm.

Fig. 1: A comparison between conventional displays and our latency compensation algorithm at a panning velocity of approx-
imately 50 ◦/s. In both cases, the motion of the head-mounted display was right to left, causing the off-kilter checkerboard to
appear to move left to right. The virtual overlay consists of a smaller checkerboard matched to the central region of the physical
board. Note that while the overlay in the conventional display algorithm significantly lags behind the physical checkerboard, our
algorithm displays the overlay on top of it and even provides some motion blur when the object moves quickly.

Abstract— We describe an augmented reality, optical see-through display based on a DMD chip with an extremely fast (16 kHz)
binary update rate. We combine the techniques of post-rendering 2-D offsets and just-in-time tracking updates with a novel modulation
technique for turning binary pixels into perceived gray scale. These processing elements, implemented in an FPGA, are physically
mounted along with the optical display elements in a head tracked rig through which users view synthetic imagery superimposed on
their real environment. The combination of mechanical tracking at near-zero latency with reconfigurable display processing has given
us a measured average of 80 µs of end-to-end latency (from head motion to change in photons from the display) and also a versatile
test platform for extremely-low-latency display systems. We have used it to examine the trade-offs between image quality and cost
(i.e. power and logical complexity) and have found that quality can be maintained with a fairly simple display modulation scheme.

Index Terms—Augmented reality, latency, display modulation

1 INTRODUCTION

Augmented Reality (AR) combines computer-generated virtual im-
agery with the user’s live view of the real environment in real time. An
effective persistent illusion that virtual and real objects coexist in the
same space requires accurate and stable registration—registration that

• Peter Lincoln is with UNC-Chapel Hill. E-mail: plincoln@cs.unc.edu.
• Alex Blate is with UNC-Chapel Hill. E-mail: blate@cs.unc.edu.
• Montek Singh is with UNC-Chapel Hill. E-mail: montek@cs.unc.edu.
• Turner Whitted is with UNC-Chapel Hill and NVIDIA. E-mail:

jtw@cs.unc.edu.
• Andrei State is with UNC-Chapel Hill and InnerOptic Technology, Inc.

E-mail: andrei@cs.unc.edu.
• Anselmo Lastra is with UNC-Chapel Hill. E-mail: lastra@cs.unc.edu.
• Henry Fuchs is with UNC-Chapel Hill. E-mail: fuchs@cs.unc.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of
Publication xx xxx. 201x; date of current version xx xxx. 201x.
For information on obtaining reprints of this article, please send
e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx/

is both spatially and temporally coherent. However, numerous sources
of registration errors are present in most AR systems. Among all er-
ror sources, system latency is the largest single source of registration
error in existing AR systems, outweighing all others combined [11].
Latency often results in virtual imagery lagging behind or “swimming”
around the intended position.

In early graphics systems, latency was expressed as a multiple of
the CRT display refresh rate where the multiplier was the depth of
the graphics pipeline. Insertion of frame buffers added an additional
frame of latency. However, maintaining viewer comfort in today’s
Virtual Reality (VR) applications makes such latency intolerable. AR
requirements are even more stringent because of the need to maintain
alignment between real and virtual environments.

A more modern approach to latency reduction is to add a post-
rendering “warping” stage through which head tracking position data
takes a shortcut past the multi-stage rendering pipeline and modifies
the rendered imagery with the most up-to-date tracking data [19, 28].
In addition, the notion of updating displays in raster order as if they
were CRTs is fading as a growing variety of display technologies lend
themselves to frameless update schemes [7, 10].

Fig. 2: A user “wearing” our AR Display. The monocular virtual im-
agery is presented to the user’s left eye.

In this work, we have attempted to simplify this modern approach
and integrate it into a head-tracked AR display. Our goal is to min-
imize latency and its detrimental effects in a manner that lends itself
to incorporation in a lightweight, low cost, low power, optical-see-
through (OST) head-mounted display (HMD) apparatus. We present a
combination of simple techniques that accomplish this goal, a descrip-
tion of the apparatus that implements the techniques, and a demonstra-
tion of its effectiveness.

Section 2 reviews related work on both VR and AR. Sections 3 and
4 are an explanation of the two parts of our technique along with a de-
scription of the physical apparatus used to test it. Quantitative latency
analysis and qualitative experimental results are given in Sections 5
and 6 respectively. Lastly, Sections 7 and 8 contain an outline of fu-
ture work and some conclusions.

2 RELATED WORK

End-to-end system latency is the sum of delays from tracking, appli-
cation, rendering, scanout, display, and synchronization among com-
ponents [15, 31]. In AR, latency can cause certain deleterious effects
similar to those it induces in VR, such as “simulator sickness” [9].
Livingston and Ai present a user study on registration errors caused by
latency, noise, and orientation errors in an AR system with optical see-
through head-worn displays [18]. They found that latency was shown
to have a significant impact on localization performance, while noise
and orientation errors have a limited impact on user performance.

As summarized by Azuma [4] and Holloway [11], existing ap-
proaches to reducing dynamic registration errors caused by latency
can be classified into four categories: latency minimization [23, 26],
just-in-time capture and processing [14], specifically also image gen-
eration [21, 24], predictive tracking [3], and video delay [5]. The latter
method delays the video stream to be augmented such that it is syn-
chronized with the corresponding tracking information (including any
“closed-loop” tracking obtained from the video imagery itself). While
it can completely eliminate relative latency between background im-
agery and augmentations, this is accomplished at the expense of de-
laying the entire augmented (composite) image relative to “reality.”

In current head-worn display systems, delay caused by waiting for
vertical sync can be the largest source of system delay [15]. Recently,
Nvidia introduced G-SyncTM to maximize input responses by making
the display accept frames as soon as the GPU has rendered them [22].
AMD introduced a similar but license-free solution called FreeSyncTM

[1], which is built upon the DisplayPortTM1.2a standard.

Post-rendering updates were an outgrowth of image-based render-
ing and include such schemes by McMillan and Bishop [20], Regan
and Pose [25], and Shade et al. [27]. Integration into more conven-
tional rendering pipelines has taken several forms as seen in Talisman
[16], the render cache [30], and adaptive frameless rendering [10].
While originally introduced as a means of reducing rendering cost
via reuse of previously rendered pixels, their utility in reducing ren-
dering latency has brought them into the mainstream of VR and AR.
Smit et al., demonstrate a system that achieves image generation and
display at the refresh rate of the display using a client-server, multi-
GPU, depth-image warping architecture [28, 29]. The client on
one GPU generates new application frames at its own frame rate de-
pending on the scene complexity, while the server on the other GPU
performs constant-frame-rate image warping of the most recent appli-
cation frames based on the latest tracking data.

The evolution of displays has accelerated, with LCDs replacing
CRTs and newer technologies appearing in projectors and small dis-
plays. For interactive applications, digital micromirror display (DMD)
projectors based on microelectromechanical systems (MEMS) mirrors
offer refresh rates in the range of tens of kHz, but are basically binary
displays requiring additional modulation processes to yield perceived
gray levels [12]. Zheng et al. [31] present background on how DMDs
operate and can be used in low latency displays. Similarly, active ma-
trix organic LED (AMOLED) panels are increasing in popularity, es-
pecially in mobile applications, because they are both potentially less
expensive and more efficient than LCD displays. While AMOLEDs
are inherently analog devices suitable for directly displaying gray scale
pixels, they have electrical properties that make binary mode appeal-
ing [13]. Both DMDs and AMOLEDs exhibit rapid refresh rates and
are therefore leading candidates for low latency VR applications. With
suitable partially reflective optics both are applicable to AR.

Lately, post-rendering update has been combined with frameless,
non-raster display refresh as a means of latency reduction [31], albeit
in non-head-tracked configuration using precomputed content. The
work described in this paper is an extension of that idea implemented
in a head-tracked display with real-time update processing and a sim-
plified display driver embedded in the head-mounted device.

3 LOW LATENCY RENDERING APPROACH

As presented in Figure 3, we employ a combination of traditional
PC/GPU rendering with a post-rendering FPGA-based display update
process. Synthetic elements of the AR scene are rendered on the PC,
using an NVIDIA R© GeForce R© GTXTM Titan Black GPU at 60 Hz
and transmitted via DisplayPortTM to the display processing system.
That system consists of a Xilinx Virtex-7 (XC7VX690T-2FFG1761)
FPGA board (HTG-7771) interfaced to a Texas Instruments DLP R©
DiscoveryTM 4100 Development Kit2, which is composed of a Xilinx
Virtex-5 (XC5VLX50-1FF1153) FPGA board, an XGA (1024×768)
DMD module, and some rear-projective illumination and optics. The
display system is capable of displaying binary frames to the user at up
to 16 kHz. In order to track the motion of the HMD, we use high reso-
lution rotary shaft encoders (US Digital E6 Series), each with 40,000
ticks of resolution per revolution, though this limits the HMD to only
angular motion. This “open-loop” tracking system, using quadrature
based encoding, is processed by a Spartan-III FPGA board (Digilent)
and routed both to the render PC and the display processing system
using RS-232 serial links. Each device receives tracking updates at a
rate in excess of its display update rates. The entire assembly, includ-
ing FPGAs, DMD, and optics is presented in Figure 4.

The PC performs standard AR scene rendering from the user’s (or
test camera’s) tracked and calibrated viewpoint, and warps the scene so
that the middle 1024×768 region of the 1920×1080 image matches
the real viewpoint for the most recent tracking update that the PC has
received. We used OpenCV’s camera calibration library to perform the
viewpoint calibration. The rest of the image contains valid imagery
that would be appropriate if the display’s field-of-view were larger. If

1http://www.hitechglobal.com/Boards/Virtex-7 FMC.htm
2http://www.ti.com/tool/dlpd4x00kit

http://www.hitechglobal.com/Boards/Virtex-7_FMC.htm
http://www.ti.com/tool/dlpd4x00kit

Table 1: Comparison of Modulation Technique Requirements and Behavior

Method
Requirements per Binary Pixel Major

Oscillation
Frequency

Response
to Input

Memory Operations Math Operations
Desired Accumulation History Comparator Add/Sub. Counter LFSR

PWM (Counter) Read Yes Yes Low Slow
PWM (Zheng et al.) Read Read/Write Read/Write Yes Yes, 2 Low Slow
PDM (Delta-Sigma) Read Read/Write Yes Yes, 2 High Fast

PR-PDM Read Yes Yes High Fast

the HMD were not moving, then without any additional processing,
simply displaying the middle region of the received image would opti-
cally register with the real world for a coherent scene. However, when
the user begins moving, then the illusion would be destroyed by the
latency along the tracker-PC-GPU-scanout-display datapath.

In order to achieve low end-to-end latency, we divide the rendering
workload between the PC and the display processor. As a side channel
in the rendered image, we include the then-current tracking informa-
tion used to render that image. Independently, the display processor
receives the live tracking information directly from the tracking sys-
tem. When it is time to begin displaying a 16 kHz binary frame, we
use both the viewpoint calibration and difference in the two tracking
states to transform the latest image to the current viewpoint. Essen-
tially, the display processor is performing a post-rendering (and post-
transmission) warp. Some sample simulated frames of the imagery in
this process are presented in Figure 5.

In order to simplify the processing required on the FPGA for this
warp, we make some assumptions about the motion. Our tracking sys-
tem only supports motion along two rotational dimensions (pitch and
yaw), and the center of projection of the moving viewpoint is near
to those two rotation axes. We also assume that the difference in an-
gular pose between the render-time pose and the live pose is small.
Thus we can simplify our warp into a 2D translation and crop of the
CPU-supplied imagery; essentially we select a particular 1024× 768
window of the full rendered image for each output display frame. As a
result, that “excess” resolution provided by the GPU becomes padding
for the offset computation engine. For each dimension, the offset (∆)
of this window in the input frame is simply the product of the differ-
ence of the rotation angles (ω) with the ratio of display pixel resolution
(r) to field-of-view angle (α): ∆ = (ωlive−ωrender)× (r/α) . In the
event that the user managed to move faster than the resolution pro-
vides, out-of-bounds pixels are replaced by black, though we did not
encounter this in our live tests.

The Virtex-7 FPGA receives the DisplayPort-provided frames at
full resolution and stores them in a double-buffer of 2048× 1536,
dual-ported (simultaneous reads and writes at different clock rates)
memories with 6-bit graylevel resolution. While we currently receive
frames at a resolution less than the storable size, we selected a power-
of-two width in order to support the highly parallelized modulation
engine (see Section 4) since it requires reading 128 pixels simultane-
ously each clock cycle. In order to fit the pair of images in fast internal
FPGA SRAM, we had to limit the graylevel resolution to 6 bits/pixel,
which we found visually sufficient. By using a double-buffered frame-
buffer in the FPGA, we are generally able to read from a buffer with
a consistent tracking state. It is occasionally possible that the writing
process may have switched buffers just after the reading process de-
cided on which buffer to read from, but because the reading process
(about 16 kHz) is orders of magnitude faster than the writing process
(60 Hz), the discrepancy would last for only a small portion of one
binary frame. If we were to use only a single framebuffer, then the
tracking state would not be consistent across the whole image while
the writer was modifying it, which would affect many binary frames.
Using two framebuffers to store the desired imagery keeps the reading
algorithm and address offset computation simpler, at the expense of
doubling the memory required for storing desired imagery.

4 DISPLAY MODULATION APPROACH

A key contribution of our work is a novel approach to modulation of
the DMD projector’s binary output to approximate desired grayscale
images. We begin this section with a review of two classical mod-
ulation approaches: pulse width modulation (PWM) and pulse den-
sity modulation (PDM). We then describe the approach introduced by
Zheng et al. [31], which sought to take advantage of the human eye’s
response time, but in practice suffers from excessive flicker and re-
quires significantly more memory, proportional to the integration win-
dow length. Finally, we describe our approach that deliberately intro-
duces randomness into the modulation, thereby providing two crucial
benefits: eliminating output flicker and yielding a much simpler hard-
ware implementation. A summary of a comparison of the modulation
techniques we discuss is presented in Table 1.

4.1 Background: Classic Modulation Schemes
The use of a DMD requires conversion of grayscale pixel values to a
sequence of binary frames that approximate those values. This is a
form of analog-digital-analog conversion: each “analog” pixel value
is actually a 6-bit grayscale value, which is converted to a series of 1’s
and 0’s that represent white and black projected values, which in turn,
due to persistence in the human visual system, the observer sees as an
analog grayscale value.

That is, to display a given 6-bit intensity k over a period of 64 bit-
times, the light is turned “on” for k bit-times and “off” for the remain-
ing times. The “on” and “off” pulses are integrated (in this case, by the
human eye), and result in the appearance of the desired intensity. The
differences between the schemes presented below are in the selection
of which k bit-times should be “on”. The selection algorithm affects
the perceived quality of the resulting image (e.g., flicker) and deter-
mines the requisite hardware resources (memory, memory bandwidth,
and computation time).

There are two well-known approaches for converting analog signals
to bitstreams (i.e., a sequence of 1’s and 0’s): pulse width modulation
(PWM) and pulse density modulation (PDM). In both approaches, the
pulse generator operates at a high enough frequency so that the moving
average closely approximates the analog value, when averaged over a
window of time smaller than the human eye’s response time. We call
this window the integration interval.

In PWM, the width of the pulse of light generated is varied in di-
rect proportion to the desired gray value at the pixel, as illustrated in
Figure 6(a)(b)(c). Thus, a 25% gray value will generate a pulse that is
“on” for 25% of the time and “off” for the remaining 75% of the time
window.

In PDM, on the other hand, each pulse is of a fixed width but the
density of “on” pulses is varied in direct proportion to the desired gray
value. Thus, a 10% gray value will generate one ‘on’ pulse followed
by nine “off” pulses, in a repeating pattern, with each pulse only a
few microseconds in duration. In effect, PDM is equivalent to a much
higher frequency PWM, resulting in output that is much smoother in
time.

The ideal method for generating PDM pulses is known as delta-
sigma modulation [2], illustrated in Figure 6(d)(e)(f): an “on” pulse
is generated if the accumulation of all the prior “on” pulses (“sigma”)
is an entire unit (“delta”) less than the integration of the desired gray
value over that time. While delta-sigma is a very powerful approach

MLX75305

Photosensor

Xilinx Spartan-

III FPGA on

Digilent Board

Combined
Live Tracking Data
Standard RS-232

Bandwidth: 115.2 kbps
Tracking Rate: 730.5 Hz

PC

2 of
Live Tracking Data

RS-232 over Twisted Pair
Bandwidth: 2 Mbps (each)

Tracking Rate: 60.6 kHz (each)

2 of

Shaft Encoder

Quadrature Encoding

DisplayPort™ 1.2
Frame Size: 1920×1080×24b

Frame Rate: 60 Hz
Embedded Tracking Data

Binary Pixel Data
Data Rate: 128 pixels per clock at 100 MHz

Frame Size: 1024×768×1b
Maximum Link Frame Rate: 16 kHz

Xilinx Virtex-5

FPGA on TI DLP®

Discovery™ Kit

Board

DMD

2 of

2048×1536×6b

Dual-Ported

Memory

DisplayPort™

Decoder

Offset

Computation &

Windowed

Image Reader W
ri
te

 P
ix

e
l D

a
ta

4
 p

ix
e
ls

 p
e
r

vi
d
e
o
 c

lo
ck

F
ra

m
e
 S

iz
e
:
1
9
2
0
×

1
0
8
0
×

6
b

Read Pixel Data
128 pixels per 100 MHz clock

Frame Window Size: 1024×768×6b

Pseudorandom

Pulse-Width

Modulator

R
e
a
d
 A

d
dr

e
ss

e
s

1
 o

p
 p

e
r

1
0
0
 M

H
z

cl
o
ck

Image Tracking Data
1 pose per frame

−

C1

C2

C3

Emitted

Light

C4

Fig. 3: Implemented data path framework. Labels C1-C4 indicate os-
cilloscope channels assigned to measurement test points used during
latency analysis. The photosensor (C4) is present and used only during
latency testing.

with many variants (e.g., higher-order integrators, continuous- vs.
discrete-time, etc.), for the specific case of fixed-rate binary values,
it is equivalent to Bresenham’s line drawing algorithm [8]: an incre-
ment in x is accompanied by a change in y only if the deviation from
the desired line would be more than one unit. Addressing our use case
specifically, implementing delta-sigma would require at least as much
memory as storing one desired image, since an error term must be
maintained for each pixel.

There are other well-known modulation approaches as well—
e.g., pulse code modulation (PCM) and pulse frequency modulation
(PFM)—but they are not suitable for our purposes. In particular, PCM
converts each analog value to a multibit digital value, not a binary se-
quence needed by the DMD projector. Similarly, PFM requires the
frequency of output pulses to be continuously variable, which is again
a poor match for the constant frame rate of the projector.

4.2 Prior Work: Approach of Zheng et al.

Zheng et al. introduced a modulation approach that was based on PDM
but incorporated a model of the human eye’s response in an attempt
to pre-correct for visual response delays [31]. In particular, their ap-
proach assumes that the human vision remembers the average of the
past few frame values over a sliding window of time (e.g., 64 binary
frames). Thus, a new binary value is produced with the assumption
that the previous 63 binary values are still contributing to the eye’s
response.

While the idea of incorporating the eye’s response delay into PDM
is an interesting one, in practice it often leads to unseemly flicker.

For example, suppose the gray value of a pixel has just changed from
100% to 50%. The history of previous binary frames will all have a
“1” value; therefore, the next binary frame will have a “0” value for
this pixel. In fact, for the next 32 binary frames, a “0” value will be
generated because the sliding window of 64 frames has a majority of
“1” values. The result is an alternating sequence of 32 “on” frames,
followed by 32 “off” frames, and this pattern repeats, resulting in sig-
nificantly choppy output that is closer to PWM than PDM. In effect,
the attempt to account for the eye’s memory has resulted in adding
feedback into the computation, thereby causing highly undesirable os-
cillatory behavior.

Thus, while the idea of incorporating the eye’s response in this way
may be a good one in principle, it can produce excessive output flicker
in practice, which is a significant drawback of their approach.

4.3 Our Approach: Pseudorandom Pulse Density
Modulation

We base our approach on PDM, but deliberately introduce random-
ness into the modulation; we call this Pseudorandom Pulse Density
Modulation (PR-PDM). The goal was to eliminate the output flicker
of PWM-like approaches (including Zheng et al. [31]), yet to obtain
an implementation complexity much less than that of ideal PDM (i.e.,
delta-sigma modulation). While we assume that a human eye would
integrate over time, we don’t explicitly model for it, but instead target
flicker frequencies that are not human perceptible.

The key idea is that for each binary frame, a pixel’s output value is
chosen to be a “1” or a “0” randomly using a probability proportional
to its gray value. In particular, we use a hardware-implemented pseu-
dorandom number generator, using the well-known linear-feedback
shift register approach (LFSR) [17], to generate 6-bit pseudorandom
numbers from 0 to 62. For any binary frame, if a certain pixel’s gray
value, normalized to the range [0, 63], is greater than the pseudoran-
dom sample for that frame, then a “1” is output, else “0.” Thus, over a
window of 63 frames, the number of 1’s will approximate the pixel’s
grayscale value. In fact, if the grayscale values are represented using
6-bit integers, then the number of 1’s will exactly equal the grayscale
value. The randomness of the 1’s and 0’s is akin to dithering in time,
thereby eliminating the choppiness of Zheng et al.’s approach [31].
An example sequence of PR-PDM output pulses is illustrated in Fig-
ure 6(g)(h)(i), and a sample capture of the output pulses measured by
the light sensor are illustrated in Figure 7. Some sample binary frames
produced through this process are presented in Figure 5.

Somewhat unexpectedly, introducing randomness into the modu-
lation approach also has a significant implementation benefit: rather
than increasing design complexity, it actually results in a much more
efficient implementation than Zheng et al.’s [31] or classic delta-sigma
modulation.

In particular, Zheng et al.’s approach must store the entire history
of the most recent 64 frames (i.e., values over the entire integration
interval) so that it can compute the accumulated value over a slid-
ing window in time. Moreover, for each new binary frame, a pixel’s
computation requires several memory accesses: reading the desired
grayscale value, reading the current accumulated value, reading the
old binary value from 64 frames prior (so it can be subtracted from
the windowed accumulation), storing the new accumulated value, and
storing the new computed binary value. All of this imposes a large
requirement on memory bandwidth, thereby limiting the frame rate at
which the system can be operated and, equivalently, increasing latency.

In contrast, our approach only requires a single memory access for a
computation. The desired grayscale value is read from memory, com-
pared with a random number, and a binary output is generated. Thus,
the demand on memory bandwidth is dramatically lower, allowing us
to achieve a significantly higher frame rate of 15,552 frames/sec. For
6-bit graylevels, and double-buffering, we use about 30% of the mem-
ory bandwidth and less than 15% of the memory storage that Zheng
et al.’s approach would require. Keeping our memory usage low en-
ables us to use fast FPGA SRAM. External DRAM, while being able
to store all of the data of any of the discussed algorithms, would have
lower throughput and restrict the frame rate accordingly.

Rear projection screen

Fresnel lens
Camera

Projector

Visual
target

Yaw
axis,

tracked with

shaft encoder

Camera Rear projection screen

Displayport cable from GPU

Rear projection screen

Rear projection screen

Fresnel lens
Camera

Projector

Visual
target

Yaw
axis,

tracked with

shaft encoder

Camera Rear projection screen

Displayport cable from GPU

Rear projection screen

Rear projection screen

Fresnel lens
Camera

Projector

Visual
target

Yaw
axis,

tracked with

shaft encoder

Camera Rear projection screen

Displayport cable from GPU

Rear projection screen

Rear projection screen

Fresnel lens
Camera

Projector

Visual
target

Yaw
axis,

tracked with

shaft encoder

Camera Rear projection screen

Displayport cable from GPU

Rear projection screen

Rear projection screen

Fresnel lens
Camera

Projector

Visual
target

Yaw
axis,

tracked with

shaft encoder

Camera Rear projection screen

Displayport cable from GPU

Rear projection screen

Fig. 4: System Assembly. Display processing electronics components include the TI DLP R© DiscoveryTM 4100 Kit (Virtex-5 FPGA), a HTG-
777 FPGA board (Virtex-7 FPGA), and a custom DisplayPort input and interconnect board. Projector components include the XGA DMD chip
and standard lens assembly. The remaining optics (red outlines) include the rear projection screen, Fresnel lens, and beam splitter (half-silvered
mirror). Either a user (see Figure 2) or a camera can observe the optically combined physical and virtual visual targets.

Our randomized approach is also simpler to implement than pure
delta-sigma modulation. The latter requires two memory reads and
one store per computation: reading the desired grayscale value, read-
ing the accumulated value, and storing the updated accumulated value.
Thus, for double-buffering, our approach requires only one-third the
memory bandwidth and only two-thirds of the memory storage of
delta-sigma.

In summary, our approach of introducing randomness into modula-
tion provides two crucial benefits: no perceptible output flicker and a
much simpler hardware implementation.

4.4 Perceptual Comparison of PWM and PR-PDM
The perceptual advantage of PR-PDM over PWM can be understood
in terms of the noise spectrum of the modulated light output; in short,
PR-PDM moves modulation noise to higher frequencies, eliminating
perceptible flicker. Referring to Figure 7(a), showing light intensity
over time for a 25%-gray value, we see that the light alternates between
“on” and “off” and is, on average, “on” 25% of the time. If we had
continuous control over the light intensity (e.g., if we could control the
current delivered to the illuminator), then we could directly-generate
a 25% value and the intensity value would be a straight line (a DC
value) at 25% of the amplitude of the signal shown in the image. Any
deviation from this DC value (the desired signal) can be thought of as
noise; in the present case, this noise is due to the modulation scheme.
If enough of the modulation noise is at a perceptible (low) frequency,
then we will see flicker. The advantage of PR-PDM over PWM is that
PR-PDM moves the noise power to higher frequencies.

To demonstrate the noise-spectral difference between these mod-
ulation schemes, we performed a simulation in LTspice3 wherein a
DC signal, at 25% of full-scale, is modulated by 6-bit PR-PDM and
PWM at a 16 kHz sample frequency. The simulation was carefully
set up to be faithful to the PR-PDM modulation scheme implemented
in the actual display: the simulated PR-PDM output in Figure 8(a) is
identical to the output in Figure 7(a) captured on the actual display.
Figure 8(b) shows the same signals passed through an RC low-pass
filter with a pass band of 125 Hz (chosen arbitrarily for illustrative pur-
poses). While the two waveforms (PR-PDM and PWM) produce the
same average value (about 1.25 V), it is clear that the PR-PDM output

3http://www.linear.com/designtools/software/

has a much smaller swing around the average, and therefore much less
noise overall, when compared to PWM.

The distinction between these methods is easier to visualize in the
frequency domain. Figure 9 is a plot of the spectra of the modulated,
unfiltered signals shown in Figure 8(a). We see that both the PWM
and PR-PDM have significant power at 254 Hz and harmonics thereof.
Notice, however, that the power at this frequency in PWM is about
15 dB (32 times) higher than PR-PDM. It is apparent that the noise in-
troduced by PR-PDM is contained primarily at frequencies at or above
1 kHz (and is thus far less likely to be perceived). (In the ideal ampli-
tude modulated case, the output would only have a DC term.)

5 MOTION-TO-PHOTON LATENCY ANALYSIS

The overarching aim of the present research is to minimize the delay
between a change in the user’s position or orientation and the corre-
sponding change to what is seen on the display. Our system has been
carefully instrumented such that this delay can be measured precisely
and such that sources of residual latency are identified and well char-
acterized. The discussion that follows is focused solely on latency
analysis and explicitly omits other details that are covered elsewhere
in the paper.

5.1 Signal Path
In our apparatus, head motion is detected by means of an optical rotary
encoder with a resolution of 40,000 ticks per revolution (one tick is
0.009◦). Considering the resolution and field of view of our display
device, a rotation of about 3.45 ticks corresponds to a single pixel
or, equivalently, the worst-case error in rotation measurement is about
0.29 pixels.

As shown in Figure 3, the rotary encoder emits quadrature-encoded
data which is decoded by an FPGA (separate from the display control
FPGA). The present angle is transmitted continuously to the display
control FPGA via a serial link. The angle is received by the display
control FPGA, where it is used to compute the correction to be ap-
plied to the displayed image. This computation takes about 4 µs and is
performed between binary frames. Importantly, the correction is per-
formed once per binary frame using the most recently received angle.

Binary pixel data is streamed to the TI DLP R© DiscoveryTM Kit’s
FPGA processor in four “quads,” each comprising one quarter of the

http://www.linear.com/designtools/software/

PC

6
0
 H

z

1
6
 k

H
z

2 of

2048×1536×6b

Dual-Ported

Memory

DisplayPort™

Decoder 6
0
H

z

1
6
 k

H
z Pseudorandom

Pulse-Width

Modulator

Xilinx Virtex-5

FPGA on TI DLP®

Discovery™ Kit

Board
DF1 DF2 DF3 DF4

D
F

1
(I

np
ut

)
D

F
2

(M
em

W
ri

te
)

M
em

or
y

R
eg

io
n

to
R

ea
d

D
F

3
(M

em
R

ea
d)

D
F

4
(B

in
ar

y)

Fig. 5: A sample dataflow. The flow diagram at the top is a subset of
the diagram in Figure 3 showing the video pathway. DF1-4 indicate
the four raster-order image streams and correspond to the rows labels.
DF1 and DF2 operate on the video clock, which stores images into
double-buffered memory at a 60 Hz frame rate, alternating buffers with
each input frame. Independently, the read process (DF3) selects a
window in the inactive buffer (the buffer not currently being written) in
the memory based on the difference in the tracking data. This window
is shown as a red outline, subdivided into the four mirror-reset regions
of the DMD. When the poses differ (as shown, e.g. live viewpoint is up
and to the right of the render-time viewpoint), then a non-center offset
region is picked. Two subsequent binary frames (DF4) are shown for
the same input poses.

rows of mirrors on the DMD. After each quad is transmitted, a “com-
mit” signal is sent and, after a short delay, the respective set of mirrors
begins to move as commanded.

Finally, in order to detect the photons and measure the total la-
tency, a precision light sensor, based upon the Melexis MLX75305
light-to-voltage IC, was temporarily fitted onto the focal plane of the
HMD.This sensor emits an analog voltage signal proportional to the
luminous flux falling upon it. We measured the −3 dB bandwidth of
this sensor at about 55 kHz and the device is specified with a rise time
of 6 µs. An opaque barrier is installed above the sensor with an approx-
imately 0.25 mm pinhole located just above the light-sensitive element
in the IC; this ensures very directional sensitivity and reduces the ef-
fect of ambient light sources.

5.2 Measurement Instrumentation
To measure motion-to-photon latency, the system was configured such
that it either displayed zero intensity or full intensity, depending on
the angle of the HMD. We will refer to the angle at which the display
changes from zero to full intensity as the trigger angle; the display
shows black when positioned anywhere on one side of the trigger angle
and white on the opposite side.

The apparatus is instrumented such that signals can be monitored
at four critical points in the resulting signal path (see Figure 3 for the
datapath location of these test signals):

1. Motion Initiated: The quadrature-decoding FPGA drives a pin
high or low depending on the HMD orientation with respect to
the trigger point. The delay between the physical movement and
this signal is on the order of 100 ns. This signal is for instrumen-
tation purposes only and is not in any way coupled to the display
control.

2. Data Received: The display control FPGA drives a pin high or
low based on the angle received over the serial link in relation to
the trigger angle. This signal also corresponds to the new angle
being latched into the correction-computation circuitry.

3. Pixel Transmitted: The value of the bit of the first pixel of each
chunk of data streamed to the DLP Kit’s processor is mirrored to
a pin on the control FPGA. In particular, if zero-intensity pixels
are being sent, this line is low and if full-intensity pixels are be-
ing sent, this line is high. Thus, we observe the transmission of
each quad whenever full-intensity is being displayed. This signal
is also low when no data is being sent.

4. Light Emitted: The analog voltage from the light sensor, posi-
tioned on the focal plane of the HMD, is monitored. The sensor
is located such that its aperture sees the first quad of the image.

We simultaneously probed these four signals using a Tektronix TDS
684B oscilloscope (1 GHz analog bandwidth at 5 gigasamples per sec-
ond). The scope was configured to trigger on the rising edge of signal
(1), above, i.e., when the HMD crosses the trigger angle (in this case
resulting in the display switching from black to white).

5.3 Latency Component Analysis
An example of a resulting trace is shown in Figure 10; channels 1-4
correspond to the respective signals described above. In this figure,
the time base is set at 20 µs per division. We will use this trace to step
through the characterization of the latency components in the present
system.

Transmission of Position Data Referring to channels 1 and 2
(green and blue, respectively), we observe a delay of about 27.5 µs
between the motion event and receipt of the new angle by the display
processor. This delay is due to the time taken for the angle information
to be fully transmitted via the serial link. In the present implementa-
tion, the serial link runs at 2 Mbps; the transmission of the angle data
plus serial framing overhead takes approximately 15 µs. The observed
delay indicates that the crossing of the trigger angle occurred just af-
ter the quadrature-decoding FPGA had begun transmitting a previous

0

1

0 4 8 12 16 20 24 28 32 36 40 44

(a) PWM 25%

0

1

0 4 8 12 16 20 24 28 32 36 40 44

(b) PWM 50%

0

1

0 4 8 12 16 20 24 28 32 36 40 44

(c) PWM 75%

0

1

0 4 8 12 16 20 24 28 32 36 40 44

(d) Delta-Sigma 25%

0

1

0 4 8 12 16 20 24 28 32 36 40 44

(e) Delta-Sigma 50%

0

1

0 4 8 12 16 20 24 28 32 36 40 44

(f) Delta-Sigma 75%

0

1

0 4 8 12 16 20 24 28 32 36 40 44

(g) PR-PDM 25%

0

1

0 4 8 12 16 20 24 28 32 36 40 44

(h) PR-PDM 50%

0

1

0 4 8 12 16 20 24 28 32 36 40 44

(i) PR-PDM 75%

Fig. 6: Sample comparison of simulated 4-bit graylevel modulation schemes by method and desired constant intensity level. Red indicates on,
and white indicates off.

(a) PR-PDM 25% (b) PR-PDM 50% (c) PR-PDM 75%

Fig. 7: Measured 6-bit graylevel modulation patterns for PR-PDM by desired intensity level using the light sensor. A high voltage indicates the
pixels are “on,” and a low voltage indicates the pixels are “off.”

0 V

1 V

2 V

3 V

4 V

5 V

20 ms 22 ms 24 ms 26 ms 28 ms 30 ms 32 ms 34 ms 36 ms 38 ms

(a) Unfiltered signals.

0 V

1 V

2 V

3 V

20 ms 22 ms 24 ms 26 ms 28 ms 30 ms 32 ms 34 ms 36 ms 38 ms

(b) Signals in (a) with RC low-pass filter with a pass band of 125 Hz applied

Fig. 8: Simulated signals of 6-bit PWM (red) and PR-PDM (blue) for
targeting a constant DC signal of 25% intensity.

value. In general, with the present implementation, this delay compo-
nent varies between 15 µs and 30 µs (22.5 µs average), depending on
the precise moment the motion occurs. The magnitude of this delay is
directly proportional to the bandwidth and latency between the track-
ing device and the display controller. Ideally, these devices would be
closely coupled, bringing this latency term close to zero.

Binary Frame Phase Referring to channels 2 and 3 (blue and
red, respectively), we observe a delay of about 46.8 µs between re-
ceipt of the trigger angle and the beginning of the transmission of the
full-intensity data to the DLP Kit. This delay is substantially due to

-80 dB V

-70 dB V

-60 dB V

-50 dB V

-40 dB V

-30 dB V

-20 dB V

-10 dB V

0 dB V

10 dB V

10 Hz 100 Hz 1,000 Hz 10,000 Hz

Fig. 9: Spectra of 6-bit PWM (red) and PR-PDM (blue) simulated
signals from Figure 8(a). For clarity, the local maximums of the first
several harmonics are highlighted with dash marks of the same color.

the new angle arriving during the transmission of the previous binary
frame (which is zero intensity and thus does not show on the red trace).
Recall that the new angle cannot be applied until the next binary frame.
Binary frame transmission takes approximately 70 µs, so this delay
will range from zero to 70 µs, with an average of 35 µs. This delay is
inherent due to the binary frame rate (which is about 15,552 Hz in the
present implementation). A higher frame-rate device would result in a
proportionally smaller value for this latency component.

Mirror Refresh Referring to channels 3 and 4 (red and yellow,
respectively), we see that the light sensor begins registering increased
intensity just after the first quad of the binary frame has been commit-
ted (seen as the short dip in the red signal). This is as expected due to
the operation of the DLP device. The 6 ns to 8 ns rise time in the light
level is most probably due to variances in how fast the mirrors switch
combined with the rated response time of the sensor itself. We declare
photons to have arrived when this signal has risen about 50%. This
time interval is inherent to the DLP device (operating at this frame

Fig. 10: Sample motion-to-photon latency measurement. Channels
from top to bottom: (1, green) motion initiated, (2, blue) data received
by display processor, (3, red) pixel transmitted, and (4, yellow) light
emitted. In this example, total latency (C1→C4) was 97.312 µs.

Fig. 11: Accumulated samples of motion-to-photon latency measure-
ment. Same channel labels as Figure 10. Delay times at the right
are the minimums of those captured. In this aggregate example, total
latency (C1→C4) ranged between 41.372 µs and about 115 µs.

rate) and is equal to about 23 µs; doubling the binary frame rate would
approximately halve this figure.

On the right-hand column of Figure 10, several trace-to-trace de-
lays are shown. For this example trace, the value for “C1→C4 Dly,”
97.3 µs, is the total latency from the detection of motion (the positive
transition of channel 1) to the detection of photons emitted by the dis-
play (the positive transition of channel 4).

5.4 Latency Range Analysis

To confirm our characterization of the variable latency sources in the
system, we switched the oscilloscope into “envelope” mode, wherein
it essentially paints many successive triggered traces on top of each
other. An example of this is seen in Figure 11; the positions and colors
of the traces are the same as in the preceding discussion. Recalling
that the time base is set to 20 µs per division, we can clearly see the
fixed and variable components of the serial transmission delay: the
minimum distance between the green and blue traces is about 15 µs
and, over the many samples taken, the data arrival occurs within about
a 15 µs window thereafter. This confirms our analysis of this latency
component. Looking at channel 4 (yellow trace), we see the range
of times when light was detected. Measuring from the 50% (vertical)
point on the left- and right-most edges, we see that the range is consis-
tent with the claimed 70us bounds. Putting together all of the latency
data we find the results presented in Table 2.

In summary, we have carefully instrumented and characterized the

Table 2: Summary of Latency Components

Component Best Worst Average

Serial Transmission (C1→C2) 15 µs 2×15 µs 1.5×15 µs
Binary Frame Phase (C2→C3) 0 µs 70 µs 0.5×70 µs

Mirror Refresh (C3→C4) 23 µs 23 µs 23 µs

Motion-to-Photon (C1→C4) 38 µs 123 µs 80.5 µs

sources of latency between physical motion and photon-to-eye de-
livery within our system. Disregarding nanosecond-scale processing
times and speed-of-light delays, all of the latencies are due to funda-
mental limitations of the present display device and the present inter-
connect between our tracking sensor and the display processor. Our
system can consume and make use of tracking data at rates of tens of
kHz. From a technology standpoint, the bottleneck in extending this
system is in acquiring and coupling tracking data at least an order of
magnitude faster than today’s technology.

6 QUALITATIVE RESULTS

We conducted an experiment to assess the efficacy of our implementa-
tion. More specifically, our aim is to assess how well our implementa-
tion maintains registration between real and augmented objects as the
user turns his or her head.

6.1 Experimental Setup
A checkerboard target, with 4 cm squares, is placed within the field of
view of the HMD at a distance of about 1.7 m. A corresponding two-
color (white and dark gray) virtual checkerboard is displayed on the
HMD. As the HMD pans, the two should stay locked together. Due
to the nature of the checkerboard pattern, any misregistration will be
quite obvious.

A GoPro R© Hero 4 Black camera was mounted in the HMD ap-
proximately at the location of a user’s left eye. The camera is rigidly-
attached to the HMD rig. The full assembly is shown in Figure 4.

For the experiment, the HMD is rotated back-and-forth over a range
of approximately 30 degrees, which is approximately the horizontal
field of view of the display. Rotation was performed by hand. To pro-
vide consistent angular velocity among trials, we mounted a protractor
scale to the top of the HMD and used a metronome to time the back-
and-forth movements. The HMD was rotated such that it moved 10
degrees per beat (for three beats) and then rested for one beat. We ex-
ecuted experiments with metronome speeds of 100 and 300 beats per
minute. Thus we see a consistent acceleration, constant velocity, and
deceleration in both directions. The resulting angular velocities equate
to approximately 17 ◦/s and 50 ◦/s, respectively.

Videos were recorded at 240 Hz both with and without our latency
correction system enabled at each of the two angular velocities, with
clips presented in the accompanying video4 and some sample frames
shown in Figure 1. Our movement technique allowed for nearly-
synchronized side-by-side comparisons of the respective tests. While
the camera uses a rolling shutter, the horizontal axis of the image plane
and the tested motion patterns were aligned, so comparisons along that
axis remain valid. We also ran a test using a full frame image with a
cutout registered to the same physical checkerboard (see Figure 12).

6.2 Discussion
Representative samples from the resulting videos under fast (50 ◦/s)
motion are shown in Figure 1. Figure 1(a) depicts typical behavior
with our latency compensation system disabled. Specifically, the im-
age displayed on the HMD is updated only as new frames arrive from
the GPU (at 60 Hz). In that photo, we see that the displayed image
lags the real-world image by almost three squares. In general, the aug-
mented image lags behind the real-world image by an amount propor-
tional to the rate of movement and the two worlds come into registra-
tion only after the motion ceases. It is worth noting that even doubling

4http://youtu.be/DvMwDfyjk1E

http://youtu.be/DvMwDfyjk1E

Fig. 12: A sample frame using our latency compensation algorithm un-
der fast panning motion (50 ◦/s) where the majority of the field of view
is dominated by a off-kilter grayscale planar image of a city skyline, in
which a small cutout region is registered to the physical checkerboard.
Note that the cutout and the checkerboard interior are well aligned.

the GPU frame rate to 120 Hz would not meaningfully mitigate this
effect, as the lag would be reduced by at most half the displacement.

The photo in Figure 1(b) depicts the same scenario but with our la-
tency correction system enabled. In this case, the real-time tracking
data from the rotary encoders is used to perform our 2-D offset correc-
tion, thereby correcting for misregistration due to motion. We observe
that the augmented image is well-registered to the real-world object.
Under the fast (50 ◦/s) pan, we also note that the motion blur in the
augmented image is consistent with that of the real-world object. The
blur is smooth and natural, significantly due to updating the input to
our modulation scheme at a high rate; as the tracking information has
the potential to update every binary frame, the window on the desired
image can also update. The eye or camera continuously integrates
these moving binary frames, resulting in motion blur.

In our accompanying video, which presents both slow and fast mo-
tion, the virtual checkerboard could occasionally become misaligned
to its physical counterpart; this typically happened at one end of the
motion path. It is worth noting that at those faulty HMD poses, both
the conventional display algorithm and our latency compensating al-
gorithm would agree on the amount of misalignment if the HMD were
not moving at the time. The source of this unfortunate misalignment
was that the rig to which our HMD was mounted allowed for slight
freedom of motion along axes that were not tracked, which repeatedly
affected the calibration and caused the static divergence between the
real and virtual worlds. This highlights the necessity for using high
quality and accurate tracking and calibration schemes in order to sup-
port AR applications in which the two worlds must be rigidly aligned.
It is worth noting that while actively moving, even in the poor calibra-
tion zones, our algorithm kept the two worlds closer.

7 FUTURE WORK

In this work, we have presented a system with very low display la-
tency, and because we use a mechanical, zero-latency tracking sys-
tem for testing, our end-to-end, motion-to-photon latency is also very
low. A more general use case would introduce additional challenges:
device inertia and low latency general pose tracking. Despite these
challenges, the basic design of our display system would continue to
benefit these potential systems.

7.1 Inertia
In our development system, we use several commercial development
kits (namely the TI DLP R© DiscoveryTM 4100 Kit for projection and
the HTG-777 FPGA board for processing) and some custom compo-
nents (a custom interconnect board and conversion optics). The use of

Tracker

30,000 Hz

3D Renderer

30 Hz

Post-Rendering

Warp

300 Hz

2D Warp

3,000 Hz

2D Offset

30,000 Hz

Modulation

30,000 Hz

DMD

30,000 Hz

Fig. 13: Theoretical staged render cascade to handle general, unre-
stricted motion. Rates and ratios between stages are presented for il-
lustrative purposes only.

these kits adds both constraints and bulk to the design; mostly these
resulted from a lack of high-speed serial links on the DMD chip and
controller board used, requiring many very wide parallel links instead,
which needed large inflexible cables. Also, the original optics were
designed for wall rather than near eye projection; as a result, the light
source is much too bright—requiring a neutral density filter—and ad-
ditional optics are needed to refocus the image to a much closer target.
This resulted in a heavy head-mounted display of over 3 kg.

However, if one were to design a custom DMD-based HMD using
our technique from scratch, then several options to reduce the weight
(and also the inertia) would be available. Texas Instruments is already
designing new, small, low-power DMDs for head-worn displays [6].
Using a smaller light source and a waveguide for optics would also
be less bulky. These and specialized (rather than FPGA) control chips
with high-speed serial links (at least 13 Gbit/s for the current resolu-
tion and binary frame rate) would allow one to further minimize the
amount of hardware that needs to go on the head, and move the display
processing logic into a backpack or off-person location. Additionally,
for mass production, the processing hardware could be optimized fur-
ther for minimal size and power or produced as ASICs rather than
general-purpose (reprogrammable) FPGAs.

7.2 Latency and General Pose Tracking
Tracking accuracy and latency from more general purpose trackers
represent a more significant problem for OST AR displays. Our tech-
nique is an open-loop process and only performs dynamic correction
due to latency from initial rendering to scanout to presentation. Errors
due to miscalibration or late reports directly from the tracking system
to the display processor would both degrade the experience by mis-
aligning the virtual imagery or causing it to lag behind the physical
world. However, in the presence of a tracking system which reports
frequently, though with significant delay, we could continue to reduce
the perceived latency to the sum of that tracking latency and about
80 µs of display latency, which would be less than a standard display
system where the latency also includes GPU processing, buffering, and
transmission and display buffering, processing, and outputting. Track-
ing systems with low update rates, such as those using cameras, would
reduce the effectiveness of the display, as the virtual imagery only
moves with new tracker poses. AR systems using tracking systems
with low latency and high report rates would gain the most benefit
from our display processing system.

Assuming that a sufficiently high-frequency, low latency, unre-
stricted, six degree-of-freedom (x, y, z, roll, pitch, yaw) tracking sys-
tem existed, then some additional modifications to the display process
would be useful to further improve the quality of the latency correc-
tion. Our current display algorithm takes advantage of the alignment
of the motion rotation axes and the DMD’s pixels; it allows us to per-
form raster order reads of windows of a source image for modula-
tion processing using only a global 2D translation offset. Performing
more general warps including rotation, skew, perspective, homogra-
phy, or distortion would significantly complicate the processing. How-
ever, it could be staged in a sequence of post-rendering (and post-
transmission) warps, where intermediate stages perform the best pos-
sible correction at the best possible speed each using the prior stage’s

processing-time tracker pose and the live tracker pose. While each
stage would add a bit more processing time, each later stage would
perform a smaller correction to account for the overall latency, so the
assumption of small pose changes would continue to hold. A sample
render cascade pipeline is shown in Figure 13.

8 CONCLUSION

We have introduced a novel image generation pipeline capable of
multi-kilohertz update rates with an average total latency of 80 µs.
The system uses a conventional GPU for image generation, cou-
pled with kilohertz-rate just-in-time pitch-yaw corrections executed
in an FPGA-based controller that drives a Digital Micromirror De-
vice. The final imagery consists of binary frames updated at over
15 kHz. Greyscale (and in the future also color) imagery is achieved
through a novel, low-overhead pseudorandom pulse density modula-
tion technique yielding a perceived image quality that approaches the
one produced by the theoretical ideal (delta-sigma), at much lower
cost and thus suitable for low-power implementations. The accompa-
nying video demonstrates our fully operational lab prototype and its
performance in an Augmented Reality scenario.

As latency is the dominant source of registration errors in Aug-
mented Reality, as well as the dominant cause of user discomfort in
Virtual Reality, this technology and its future variants will likely be-
come essential components of widely used VR and AR systems.

Other future work in this area should include accurate minimal-
latency tracking at or above 10 kHz, improved system calibration,
just-in-time kilohertz-rate correction for additional degrees of freedom
such as head roll, and of course, adaptation to other display technolo-
gies suitable for mobile devices (e.g. AMOLED).

ACKNOWLEDGMENTS

The authors wish to thank Kurtis Keller and Jim Mahaney for their
engineering advice and support. They also wish to thank Mary Whit-
ton for her insights and suggestions. This research was supported in
part by NSF grant CHS IIS-1423059: Minimal-Latency Tracking and
Display for Head-Worn Augmented Reality Systems. This research
was also supported in part by the BeingThere Centre, a collabora-
tion between Eidgenössische Technische Hochschule (ETH) Zürich,
Nanyang Technological University (NTU) Singapore, and University
of North Carolina (UNC) at Chapel Hill. The Centre is supported by
these three institutions and by the Singapore National Research Foun-
dation under its International Research Centre @ Singapore Fund-
ing Initiative and administered by the Interactive Digital Media Pro-
gramme Office.

REFERENCES

[1] AMD. AMD FreeSyncTM technology. http://www.amd.com/en-us/
innovations/software-technologies/technologies-gaming/freesync, 2015.

[2] P. Aziz, H. Sorensen, and J. van der Spiegel. An overview of sigma-delta
converters. Signal Processing Magazine, IEEE, 13(1):61–84, Jan 1996.

[3] R. T. Azuma. Predictive Tracking for Augmented Reality. PhD thesis,
University of North Carolina at Chapel Hill, 1995.

[4] R. T. Azuma. A survey of augmented reality. Presence, 6(4):355–385,
1997.

[5] M. Bajura and U. Neumann. Dynamic registration correction in video-
based augmented reality systems. Computer Graphics and Applications,
IEEE, 15(5):52–60, 1995.

[6] V. R. Bhakta, J. Richuso, and A. Jain. DLP R© technology for near eye
display. White Paper DLPA051, Texas Instruments, September 2014.

[7] G. Bishop, H. Fuchs, L. McMillan, and E. J. S. Zagier. Frameless ren-
dering: Double buffering considered harmful. In Proc. of the 21st An-
nual Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’94, pages 175–176, New York, NY, USA, 1994. ACM.

[8] J. Bresenham. Algorithm for computer control of a digital plotter. IBM
Systems Journal, 4(1):25–30, 1965.

[9] T. J. Buker, D. A. Vincenzi, and J. E. Deaton. The effect of apparent
latency on simulator sickness while using a see-through helmet-mounted
display: Reducing apparent latency with predictive compensation. Hu-
man Factors: The Journal of the Human Factors and Ergonomics Society,
54(2):235–249, 2012.

[10] A. Dayal, C. Woolley, B. Watson, and D. Luebke. Adaptive frameless
rendering. In Proc. Eurographics Conference on Rendering Techniques,
pages 265–275, 2005.

[11] R. L. Holloway. Registration Error Analysis for Augmented Reality.
Presence, 6(4):413–432, 1997.

[12] L. J. Hornbeck. Digital light processingTM for high brightness, high-
resolution applications. In Proc. SPIE, Projection Displays III, pages
27–40, 1997.

[13] L. J. Hornbeck. A digital driving technique for an 8b QVGA AMOLED
display using ∆Σ modulation. In Proc. IEEE International Solid State
Circuits Conference, pages 270–272, 2009.

[14] M. C. Jacobs, M. A. Livingston, and A. State. Managing latency in com-
plex augmented reality systems. In Proceedings of the 1997 symposium
on Interactive 3D graphics, I3D ’97, pages 49–ff., New York, NY, USA,
1997. ACM.

[15] J. J. Jerald. Scene-Motion- and Latency-Perception Thresholds for Head-
Mounted Displays. PhD thesis, University of North Carolina at Chapel
Hill, 2009.

[16] J. T. Kajiya and J. Torborg. Talisman: Commodity realtime 3d graphics
for the PC. Association for Computing Machinery, Inc., January 1996.

[17] J. Koeter. Whats an LFSR. Technical Report SCTA036A, Texas Instru-
ments, December 1996.

[18] M. Livingston and Z. Ai. The effect of registration error on tracking
distant augmented objects. In Proc. IEEE/ACM International Symposium
on Mixed and Augmented Reality (ISMAR), pages 77–86, Sept 2008.

[19] W. R. Mark, L. McMillan, and G. Bishop. Post-Rendering 3D Warping.
In Proc. ACM I3D, pages 7–16, 1997.

[20] L. McMillan and G. Bishop. Plenoptic modeling: An image-based ren-
dering system. In Proceedings of the 22Nd Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH ’95, pages 39–
46, New York, NY, USA, 1995. ACM.

[21] M. Mine and G. Bishop. Just-in-time pixels. Technical report, Chapel
Hill, NC, USA, 1995.

[22] NVIDIA Corporation. G-SYNC – Technology – GeForce. http://www.
geforce.com/hardware/technology/g-sync/technology, October 2013.

[23] M. Olano, J. D. Cohen, M. R. Mine, and G. Bishop. Combatting render-
ing latency. In Proc. ACM I3D, pages 19–24, 1995.

[24] V. Popescu, J. Eyles, A. Lastra, J. Steinhurst, N. England, and L. Ny-
land. The WarpEngine: An architecture for the post-polygonal age. In
Proceedings of the 27th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’00, pages 433–442, New York, NY,
USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[25] M. Regan and R. Pose. Priority rendering with a virtual reality address
recalculation pipeline. In Proceedings of the 21st Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’94, pages
155–162, New York, NY, USA, 1994. ACM.

[26] M. J. P. Regan, G. S. P. Miller, S. M. Rubin, and C. Kogelnik. A real-
time low-latency hardware light-field renderer. In Proceedings of the
26th Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’99, pages 287–290, New York, NY, USA, 1999.
ACM Press/Addison-Wesley Publishing Co.

[27] J. Shade, S. Gortler, L.-w. He, and R. Szeliski. Layered depth images. In
Proceedings of the 25th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’98, pages 231–242, New York, NY,
USA, 1998. ACM.

[28] F. Smit, R. van Liere, and B. Froehlich. A programmable display layer for
virtual reality system architectures. Visualization and Computer Graph-
ics, IEEE Transactions on, 16(1):28–42, Jan 2010.

[29] F. A. Smit, R. van Liere, and B. Fröhlich. An image-warping VR-
architecture: Design, implementation and applications. In Proceedings
of the 2008 ACM Symposium on Virtual Reality Software and Technol-
ogy, VRST ’08, pages 115–122, New York, NY, USA, 2008. ACM.

[30] B. Walter, G. Drettakis, and S. Parker. Interactive rendering using the ren-
der cache. In D. Lischinski and G. Larson, editors, Rendering techniques
’99 (Proceedings of the 10th Eurographics Workshop on Rendering), vol-
ume 10, pages 235–246, New York, NY, Jun 1999. Springer-Verlag/Wien.

[31] F. Zheng, T. Whitted, A. Lastra, P. Lincoln, A. State, A. Maimone, and
H. Fuchs. Minimizing latency for augmented reality displays: Frames
considered harmful. In Mixed and Augmented Reality (ISMAR), 2014
IEEE International Symposium on, pages 195–200, Sept 2014.

http://www.amd.com/en-us/innovations/software-technologies/technologies-gaming/freesync
http://www.amd.com/en-us/innovations/software-technologies/technologies-gaming/freesync
http://www.geforce.com/hardware/technology/g-sync/technology
http://www.geforce.com/hardware/technology/g-sync/technology

	Introduction
	Related Work
	Low Latency Rendering Approach
	Display Modulation Approach
	Background: Classic Modulation Schemes
	Prior Work: Approach of Zheng et al.
	Our Approach: Pseudorandom Pulse Density Modulation
	Perceptual Comparison of PWM and PR-PDM

	Motion-to-Photon Latency Analysis
	Signal Path
	Measurement Instrumentation
	Latency Component Analysis
	Latency Range Analysis

	Qualitative Results
	Experimental Setup
	Discussion

	Future Work
	Inertia
	Latency and General Pose Tracking

	Conclusion

